

Virginia Bioinformatics Institute Bioinformatics Resource Center http://brc.vbi.vt.edu

October, 2004

Virginia Bioinformatics Institute

- Created in July, 2000
- Part of Virginia Tech (Blacksburg, VA)
- 16 faculty members and approx 200 research scientists and staff
- Projects related to BRC
 - Pathport project (DoD)
 - MARCE (bioinformatics and genomics research core)
 - proteomics resource database

Our organisms

Bacteria

- Rickettsia
- Brucella
- Coxiella burnetii

Viruses

- Coronaviruses (SARS)
- Caliciviruses
- Rabies viruses
- Hepatitis A viruses
- Hepatitis E viruses

Current count: 238 genomes

	viruses	bacteria
Number of genomes	95%	5%
Number of genes (approx)	20%	80%

Organizational structure

- **Supervisory committee**: Bruno Sobral (PI), João Setubal (coPI), Project Manager, group leaders
- Curation group: Oswald Crasta
- Database/Web group: J. Setubal
- Software development group: Dana Eckart
- Collaborators: Debby Hix and Joe Gabbard (SRC/ VTech, usability engineering) and Naren Ramakrishnan (CS/VT, data mining)
- Scientific Working Group: 10 external scientists, advisory role, not yet created

Organism experts

organism	expert	affiliation
Brucella	Stephen Boyle	VTech
Rickettsia and Coxiella	Abdu Azad	U Maryland
coronaviruses	Susan Baker	Loyola
Hep E viruses	Xian-jin Meng	VTech
Hep A viruses	Greg Armstrong*	CDC
Rabies virus	Charles Ruprecht*	CDC
Calicivirus	Stephen Monroe*	CDC

^{*} awaiting confirmation

BRC Mission

- Provide curated data
- Provide analysis resource
- Facilitate the discovery of new ways to fight infectious diseases

Curation

• Annotation: what is "traditionally" done for genomes; what you get when you download bacterial/viral genome files from NCBI

• Curation:

- Make annotation as accurate and as standard as possible
- Enrich with additional sources of information
 - Literature
 - Other experimental data ("post-sequence data")
 - Input from experts in the scientific community

Our general approach to curation

- We will use the concept of *reference genome* (RG) and *associated genome* (AG)
- For each class, we'll choose one genome and carefully curate it: **RG**
- Each other genome in the class will be declared an AG, whose curation will be derived from the RG
- Choice of RG to be made with input from scientific community

Four steps to RG curation

- 1. Genome annotation: prediction/detection of various features (protein-coding genes, rRNA genes, repeats, etc)
- 2. Gene annotation
 - In-house automated pipeline
 - Comparison between pipeline results and existing annotation
 - Comply with standards
 - Create a "UniGene set" for its class
- 3. Literature-based gene curation
- 4. Integration of post-sequence data

Associated Genome curation

- "import" annotation from RG (requires accurate ortholog sets)
- Determine unique genes, features
- Enlarge UniGene set for the class with unique genes
- When all AGs have been curated, major release of curated genomes for the class
- Selected AGs/gene groups may undergo special curation (as requested by the community)

Comparative genomics

Three levels

- 1. Whole genome (e.g. alignments)
- 2. Gene-centric (e.g. ortholog sets, unique genes)
- 3. Sequence variation (codon usage differences, SNPs, etc)

Analysis resource

- Web-based, fully cross-linked
 - Genome and gene families/grouping browsing
 - Sequence search
 - Database query
 - Comparative genomics pages
 - Easy access to post-sequence data

toolBus resource

- Client-side interconnect; gives access to and integrates many 3rd party genome analysis tools
- Developed at VBI; already functional
- provides capabilities similar to those planned for the web-based interface

Sequence 2

General timeline for first 2 years

- 1. Dec 04: AsIs project: make existing annotations available through website
- 2. Jun 05: Genome/gene annotation for all RGs
- **3. Jun 06**: AGs curation and literature-based curation (first release, ongoing with refinements and additional genomes)
- 4. following years: Post-sequence data curation

Interactions with scientific community

- Organism experts
 - Active contributors in the curation process
 - Will select genes of special importance
 - Will help with literature search
 - Bridge to specific scientific communities
- Genome providers
- General scientific community
 - A good protocol is being currently worked on

Database architecture

- DBMS + schema
 - Oracle + GUS (Genomics Unified Schema, developed at UPenn)
- Why GUS?
 - Usable and available now; meets requirements
 - At least 3 other groups at VBI are using it (considerable local expertise)
- Curation database + public database

Some VBI BRC principles

- Use as many existing analysis/viewing tools as possible (example: GBrowse, bioperl, etc)
- In terms of curated data we want to be comprehensive and accurate...
- ...however, we have to balance manual curation (high accuracy) with automated analysis (high throughput, hence scalable)
- User interfaces: keep them simple and useful (usability engineering)

Size of the VBI BRC operation

- In addition to group leaders (1 FTE), project manager (1 full-time), and external collaborators (0.5 FTE):
 - 4 full time curators
 - 1 full time database analyst
 - 4 full time software developers

Issues under study

- What is the depth of curation?
- Differences between viral and bacterial curation
- How best to benefit from interactions with the scientific community
- Interaction with sister BRCs (see interoperability session later)

Conclusion

• We look forward to our 6th year of operation!